
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CYBERNETICS 1

Fast-RCM: Fast Tree-Based Unsupervised
Rare-Class Mining

Haiqin Weng , Shouling Ji, Member, IEEE, Changchang Liu, Ting Wang,
Qinming He, and Jianhai Chen, Member, IEEE

Abstract—Rare classes are usually hidden in an imbalanced
dataset with the majority of the data examples from major
classes. Rare-class mining (RCM) aims at extracting all the
data examples belonging to rare classes. Most of the existing
approaches for RCM require a certain amount of labeled data
examples as input. However, they are ineffective in practice since
requesting label information from domain experts is time con-
suming and human-labor extensive. Thus, we investigate the
unsupervised RCM problem, which to the best of our knowledge
is the first such attempt. To this end, we propose an efficient
algorithm called Fast-RCM for unsupervised RCM, which has
an approximately linear time complexity with respect to data
size and data dimensionality. Given an unlabeled dataset, Fast-
RCM mines out the rare class by first building a rare tree
for the input dataset and then extracting data examples of the
rare classes based on this rare tree. Compared with the existing
approaches which have quadric or even cubic time complex-
ity, Fast-RCM is much faster and can be extended to large-scale
datasets. The experimental evaluation on both synthetic and real-
world datasets demonstrate that our algorithm can effectively
and efficiently extract the rare classes from an unlabeled dataset
under the unsupervised settings, and is approximately five times
faster than that of the state-of-the-art methods.

Index Terms—Clustering methods, data mining, tree data
structures.

Manuscript received February 20, 2019; revised April 27, 2019; accepted
June 11, 2019. This work was supported in part by NSFC under
Grant 61772466, Grant U1836202, and Grant 61472359, in part by the
Zhejiang Provincial Natural Science Foundation for Distinguished Young
Scholars under Grant LR19F020003, in part by the Provincial Key Research
and Development Program of Zhejiang, China, under Grant 2017C01055, and
in part by the Alibaba-ZJU Joint Research Institute of Frontier Technologies.
This paper was recommended by Associate Editor A. F. S. Gomez.
(Corresponding author: Jianhai Chen.)

H. Weng, Q. He, and J. Chen are with the College of Computer Science
and Technology, Zhejiang University, Hangzhou 310027, China (e-mail:
hq_weng@zju.edu.cn; hqm@zju.edu.cn; chenjh919@zju.edu.cn).

S. Ji is with the Institute of Cyberspace Research and College of
Computer Science and Technology, Zhejiang University, Hangzhou 310027,
China, and also with the Alibaba-Zhejiang University Joint Institute of
Frontier Technologies, Zhejiang University, Hangzhou 310027, China (e-mail:
sji@zju.edu.cn).

C. Liu is with the Department of Distributed AI, IBM Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 USA (e-mail:
changchang.liu33@ibm.com).

T. Wang is with the Department of Computer Science, Lehigh University,
Bethlehem, PA 18015 USA (e-mail: inbox.ting@gmail.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2019.2924804

I. INTRODUCTION

THE CONCEPT of rare class was first proposed by Pelleg
and Moore [1], where rare classes were defined as tiny

clusters of similar anomalies. For example, in finance, a rare
class usually represents a small fraction of fraud transactions
generated from the same template [2]. As time goes on, rare
classes are not limited to similar anomalies [2]–[5]. All the
interesting data examples from undiscovered classes can be
regarded as rare classes. For instance, in medical diagnosis, a
rare class can be a new kind of disease which is unknown to
the current doctors [3].

In many real-world applications, the proportion of data
examples in different classes is highly skewed: major classes
dominate the dataset, and rare classes may have only a few
examples. However, we are usually more interested in rare
classes since analyzing rare classes can help us to under-
stand the underlying patterns of those real-world applications.
For example, finding out the fraud transactions generated
from the same malicious template helps users to analyze the
security leak of a financial system. Hence, rare-class min-
ing (RCM) is proposed for discovering the data examples of
the rare classes from a given dataset [2], [4]–[8]. The dif-
ference between RCM and imbalance learning is that: RCM
mainly focuses on discovering the data examples of the rare
classes, while imbalanced classification trains a classifier over
the entire dataset. Traditional RCM techniques require label
information, and are normally carried out by two semisuper-
vised subtasks [2], [4]–[7]: 1) rare-class detection (RCD) and
2) rare-class exploration (RCE). RCD aims at identifying at
least one data example of a rare class to provide evidence
for its existence with certain confidence by using a labeling
Oracle [2], [6], [7], [9], [10]. RCE aims at finding out the
remaining data examples of a rare class by using at least one
labeled data example of that class as a seed [4], [5]. Both
of the two subtasks require label information, which is time
consuming and human-labor extensive for real-world applica-
tions. The state-of-the-art RCD approaches [2], [6], [7] and
RCE methods [4], [5] are hardly to work properly if no label
information is available [11].

To address the above challenge, we therefore investigate
RCM under the unsupervised setting (unsupervised RCM
for short), which to the best of our knowledge is the first
such attempt. Unsupervised RCM is particularly useful in
real-world applications since it has two advantages.

1) It can avoid potential mismatch between true data
labels and their corresponding labels predicted by human

2168-2267 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-3005-761X


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CYBERNETICS

experts. For example, in medical diagnosis, each of the
diseases is very complicated and hard to be diagnosed
perfectly even for an experienced doctor. In this case,
traditional semisupervised RCM may not work while in
contrast unsupervised RCM is possible to detect a rare
class of diseases which has the potential to help doctors
find a new disease.

2) It will reduce the time-consuming process of label
collection especially for those involving online data
sources. Furthermore, unsupervised RCM is the only
technique that can be applied for RCM when no labeled
data is available.

In this paper, we propose an efficient algorithm Fast-RCM for
unsupervised RCM, which has an approximately linear time
complexity with respect to the dataset size and dimensionality.
Compared with the existing approaches which have quadric or
even cubic time complexity [4], [12]–[14], Fast-RCM is much
faster in runtime behavior. Given a dataset, Fast-RCM works
as follows. It first builds a rare tree for this dataset, which reor-
ganizes the data for capturing the characteristics of the rare
classes. Then, it extracts rare classes leveraging the searching
results of the data over this rare tree. The rare tree is a spe-
cific binary tree, which reduces the runtime complexity into
approximately linear. Moreover, the rare tree can also be used
as a density estimator for imbalanced datasets. Experimental
results show that Fast-RCM can effectively extract the rare
classes under the unsupervised setting and is approximately
five times faster than that of the state-of-the-art methods.

Our contributions are summarized as follows.
1) We provide a novel rare tree for characterizing the

structures of an imbalanced dataset, which can also be
utilized to select rare class candidates as well as estimat-
ing the density of input data. Further, we theoretically
analyze the performance of the rare tree as a density
estimator. We find that the deviation between the esti-
mated and true density of input data is reduced by our
rare tree construction process, and the variance of the
estimated density decreases with larger size of the input
data.

2) Based on the rare tree, we propose an unsupervised
RCM technique, called Fast-RCM, which to our best
knowledge is the first such attempt. Compared with the
state-of-the-art approaches, Fast-RCM is much faster
and can be applicable to large-scale datasets.

3) Finally, we apply Fast-RCM on two real-word datasets—
CALLS and DSAA—to discover the interesting patterns
of rare classes hidden in them. CALLS contains three
kinds of emergency calls from the Montgomery County,
and DSAA contains the course records of the regis-
tered students on an online course platform. On these
datasets, Fast-RCM achieves five times faster than that of
the state-of-the-art supervised methods and discovers the
rare class of a natural disaster happening in Montgomery
County and the rare class of the certificated students who
pass the final examination.

The remaining sections are organized as follows. We review
the related work in Section II and present the preliminaries in
Section III. In Section IV, we first introduce the overview of

our Fast-RCM algorithm, and then we present the two main
steps of Fast-RCM, that is, rare tree construction and rare-
class extraction. Especially, in Section IV-A4, we theoretically
analyze the upper bound of the rare tree as a density estimator
of the input dataset. Finally, we show the experimental results
in Section V and conclude this paper in Section VI.

II. RELATED WORK

Generally, previous work of RCM can be classified into
three categories: 1) anomaly detection in RCM; 2) RCD; and
3) RCE.

A. Anomaly Detection in RCM

Anomaly detection refers to the problem of finding pat-
terns in given data that do not conform to the expected
behavior [15]. Over time, a variety of anomaly detection tech-
niques have been developed [13], [14], [16]–[25], and most of
which are specifically designed for certain application domains
while the others are for the more general cases. These detec-
tion techniques can be further classified into four categories:
1) classification-based schemes [16]–[20]; 2) clustering-
based schemes [14], [21], [22]; 3) nearest neighbors-based
schemes [13], [23]; and 4) statistical schemes [24], [25]. A
thread of the anomaly detection techniques can be applied into
unsupervised RCM by returning data examples that are iden-
tified as a cluster of anomalies [13], [14], [21]. Nonetheless,
since these detection techniques are not specifically designed
for the application domain of unsupervised RCM, they are
usually hard to capture the fine-grained characteristics of the
rare classes and thus cannot perform well in practice.

Among these detection techniques, the most related work to
ours is isolation forest (IF) [14], which is a clustering-based
method. IF builds an ensemble of iTrees for a given dataset,
then reports data examples that have short average path lengths
on the iTrees as anomalies. Compared with IF, our Fast-RCM,
has two advantages: 1) Fast-RCM builds only one tree for the
input dataset, making it much faster and 2) Fast-RCM builds
the rare tree based on the compactness characteristics of the
rare classes, making it more accurate. Except for this paper,
He et al. extended the one-class SVM [19] to semisupervised
RCM in [12], where they tried to enclose a rare class with a
minimum-radius hyperball by using a small training set.

B. Rare-Class Detection

RCD aims at identifying at least one data example of a rare
class to provide evidence for its existence by using a labeling
Oracle [1], [3], [7]–[10], [26]–[28]. Since RCD can find at
least one data example for a rare class, it is often followed
by an RCE process to discover the remaining data examples
of this rare class. The problem of RCD is first formalized by
Pelleg and Moore [1], where they introduced a novel active-
learning scenario in which a user wants to work with a learning
algorithm to identify useful anomalies. To solve this problem,
they proposed a mix-model-based algorithm interleave for
identifying rare class examples existing in tiny classes of sim-
ilar anomalies. Methods proposed so far can be classified into
three categories: 1) the mixture-model-based [1], [10]; 2) the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WENG et al.: FAST-RCM: FAST TREE-BASED UNSUPERVISED RCM 3

nearest-neighborhood-based [3], [8], [9]; and 3) the density-
based [7], [26]–[29]. Most recently, Wang et al. [9] presented a
k-nearest-neighbors-based RCD algorithm along with an auto-
matically selection strategy for k. Tu et al. [10] proposed a
mixed-model-based novel RCD framework, which combined
active learning and hierarchical density-based clustering to find
initial data examples of the rare classes.

C. Rare-Class Exploration

With one or more labeled data examples as initializ-
ing seeds, RCE targets on discovering the remaining data
examples belonging to the same rare class of those seeds.
Recently, there have been a few algorithms proposed for RCE.
He et al. [12] for the first time proposed an optimization frame-
work to discover the rare class by using a small training set.
Huang et al. [4] proposed an RCE algorithm FRANK which
transformed the problem of RCE to a local community detec-
tion problem. Liu et al. [5] proposed an effective and efficient
algorithm known as FREE to explore rare classes of arbitrary
shapes. Recently, Liu et al. [30] proposed a novel approach
called RCEWA, which achieves a higher F-score compared
with the existing algorithms.

D. Remarks

In summary, the anomaly detection techniques
[13], [14], [21] cannot perform well for our applications
since they are hard to capture fine-grained characteristics of a
rare class. Both the state-of-the-art RCD approaches [7], [8]
and RCE methods [4], [5] are ineffective in practice since
it can be time consuming to request label information from
domain experts. Moreover, these algorithms are hardly to
work properly if no label information is available [11].
To address the limitations of existing work, we propose
Fast-RCM for unsupervised RCM in this paper.

III. PRELIMINARIES

In this section, we first formulate the problem of unsuper-
vised RCM. Then, we give several assumptions of rare classes,
which motivate our design of Fast-RCM. Finally, we briefly
introduce the dip test used for rare tree construction.

A. Problem Formulation and Assumptions

Let L = {1, 2, . . . , m1, . . . , m} denote the set of m distinct
classes, where the first m1 classes are rare classes and the
remaining are major classes. Let X = {Xi|i = 1, 2, . . . , n} ⊂
Rd denote the set of unlabeled data examples, where d is the
dimensionality of each Xi, and Y = {Yi|i = 1, 2, . . . , n} denote
the set of the true labels of X, which is usually not available
in practice.

The unsupervised RCM is formulated as follows.
Definition 1 (Unsupervised RCM): Given an unlabeled

dataset X, which come from the class set L, that is, Yi ∈ L,
unsupervised RCM aims to extract the set of data examples
from X that belong to the rare classes, that is, R = {Xi|∃Xi ∈
X, Yi ≤ m1}.

Usually, the number of data examples in the
rare class is extremely small following the assump-
tion that are commonly used by the existing work
[1], [3], [4], [7], [8], [12], [26], [31], [32]. Different from
both RCD and RCE, unsupervised RCM neither requests any
label information from a labeling Oracle nor requires labeled
data examples as its input. Unsupervised RCM can find out
the rare classes in practice, and further help us to understand
the underlying patterns contained in those rare classes. Again,
let us consider the dataset of financial transactions collected
from a financial system as an example. In this scenario,
unsupervised RCM is expected to discover all the fraud
transactions without requiring the help from security experts.
These discovered fraud transactions further help us to analyze
the potential vulnerabilities of the financial system.

For each of the rare classes, we adopt the following
assumptions which are commonly used in existing research
[1], [3], [4], [7], [8], [12], [26], [31], [32].

Assumption 1 (Compactness): The data examples of a rare
class form a tiny and compact cluster on partial or the whole
dimensions in the feature space.

This compactness assumption was first proposed by Pelleg
and Moore [1], where a rare class exists within tiny clusters of
similar anomalies. In recent work [3], [4], [8], all the compact
clusters of interesting data examples from undiscovered classes
are regarded as rare classes. In addition to the compactness
assumption, the existing work [1], [3], [4], [8] also adopted
the isolation assumption where a rare class is isolated from the
major classes. To relax this assumption and make our analysis
generalizable, we assume that a rare class can be overlapped
with the major classes.

The compactness assumption implies that rare classes are
tightly grouped on partial or the whole feature space, and
therefore their data distributions form local maximums. A
mode of a data distribution is considered to be any value
where the probability density function (pdf ) has a local maxi-
mum [33]. Based on this analysis, each of the rare classes can
be seen as a mode on partial dimensions or the whole feature
space, as shown below.

Assumption 2 (Unimodality): Each of the rare class corre-
sponds to one mode on partial dimensions or on the whole
feature space.

Maurus and Plant [32] adopted a more strict unimodality
assumption where each cluster in the feature space forms
a unimodal shape on all coordinate directions. Under this
unimodality assumption, we can use the dip test [34] to recur-
sively choose the split value for the rare tree, which will be
described in detail in Section IV.

B. Dip Test

The dip test [34] is a formal statistical test that measures
the unimodality of a data distribution on one dimension. In
this paper, we exploit the dip test to discover the presence of
modes in the data distribution of an input dataset.

Given an unlabeled dataset X ⊂ Rd, let Xj = {Xj
i |i =

1, 2, . . . , n} be the vertical projection of X on its jth dimension.
For each Xj, let FXj be its empirical cumulative distribution



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON CYBERNETICS

Fig. 1. Dip test.

function, and GXj be the optimal piecewise-linear function that
is used to fit FXj .

Mechanism of Dip Test: To measure the unimodality of Xj,
the dip test uses a common definition of unimodality: the dis-
tribution of Xj is unimodal if FXj takes a convex form up to
its mode and a concave form after the mode. Based on this
definition, the dip test tries to fit some piecewise-linear func-
tion GXj on FXj . Then, dip test measures the unimodality of
Xj as the maximum difference between GXj and FXj . Note
that since a group of piecewise-linear functions can be used
to fit FXj , the dip test selects the one that has the minimum–
maximum distance as the optimal fit function. In summary,
the dip test measures the unimodality of Xj as the maximum
difference between FXj and the unimodal distribution function
that minimizes the maximum difference.

For simplicity, the dip test tries to assert that FXj is unimodal
by fitting a piecewise-linear function on it. Then, it gives us
a measure for FXj ’s departure from unimodality. The farther
FXj stays from unimodality, the larger value of this measure.
Consider Xj with two modes as an example. In this case, the
multimodal distribution of Xj makes GXj stay far from FXj .
Therefore, the dip test reports a large value of this measure
for Xj. More importantly, the dip test gives the locations of
the largest mode: the left and right interval of the mode.

Now, for each Xj, we define p as the measure of its uni-
modality. We further denote xL and xR as the left and right
interval, respectively, of the largest mode of Xj. According to
Hartigan and Hartigan [34], the dip test is defined as follows.

Definition 2 (Dip Test): Given a dataset X ⊂ Rd, the dip
test of X on its jth dimension is defined as

xL, xR, p = diptest(Xj).

Here, diptest(Xj) can be utilized to: 1) show whether Xj

is unimodal shaped or not. Specifically, a small value of p
indicates that Xj is unimodal shaped and a large value of p
indicates that Xj has more than one mode and 2) detect the
locations of the largest mode on the jth dimension, that is, xL

and xR. Let us consider an example in Fig. 1 which shows the
histogram and density distribution of a 1-D dataset consisting
of one rare class and one major class. The dip test here shows
that the distribution of this dataset is multimodal and detects
the largest mode ranging from C to D.

Fig. 2. Overview of Fast-RCM.

IV. FAST RARE-CLASS MINING

In this section, we first introduce the overview of Fast-
RCM, and then describe the detailed steps of Fast-RCM. As
aforementioned, Fast-RCM consists of two key steps: 1) rare
tree construction and 2) rare-class extraction. The details of
these two steps are described in Sections IV-A and IV-B,
respectively.

The compactness and unimodality assumptions of a rare
class imply that the compact cluster of a rare class usually cor-
responds to the most significant mode in partial or the whole
dimension. Take Fig. 1 as an example again. The rare class
corresponds to the most significant mode ranging from C to D
while the part of the major class corresponds to another mode
ranging from A to B. Moreover, the dip test can tell that the
dataset illustrated in Fig. 1 is multimodal shaped and can find
the range of the most significant mode of the rare class. In
other words, the dip test provides some guidance to help us
find the coarse shape of the rare class.

Fast-RCM Overview: Based on the above observation and
analysis, we come up with the idea of Fast-RCM, as illustrated
in Fig. 2. Fast-RCM consists of two main steps: 1) rare tree
construction and 2) rare-class extraction.

For the rare tree construction step, Fast-RCM builds a spe-
cific binary tree, called rare tree, to reorganize the given dataset
and to be used further to find the coarse shape of the rare class.
Specifically, in the tree construction process, we utilize the dip
test to decide that whether the input dataset should be split or
not and where to be split. As shown in Fig. 2, the rare class
is then reorganized into a red apple hidden in the rare tree.

For the rare-class extraction step, we use the constructed
rare class as a ranking tool to assign a score for each example.
In the constructed rare tree, data examples of the rare class
have two dominate features: 1) they have a short traversing
path because they are separated from the rest in the previous
building process and 2) they usually fall into leaf nodes with
high density. Thus, Fast-RCM uses the combination of these
two features to discriminate the data examples of the rare class
from the major ones. Fast-RCM first ranks each data example
using their traversing results computed over the rare tree. Then,
it selects a few data examples with high scores as a candidate
set of the rare class. In the end, it refines the candidate set to
achieve high accuracy for detecting the rare class.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WENG et al.: FAST-RCM: FAST TREE-BASED UNSUPERVISED RCM 5

Algorithm 1 RareTuple
1: Input: The unlabelled dataset X
2: Output: The rare tuple of the input dataset
3: Initialise D← {1, . . . , d}
4: Initialise p←+∞
5: while p > 10−10 and D is not empty do
6: t← arg max

j∈D

(
max(Xj)− min(Xj)

)

7: D← D\{t}
8: xL, xR, p ← diptest(X, t)
9: end while

10: split_dim ← t
11: L← {

Xi|∀Xi ∈ X, Xt
i ≤ xL

}

12: R← {
Xi|∀Xi ∈ X, Xt

i � xR
}

13: if |L| > |R| then
14: split_value← xL

15: else
16: split_value← xR

17: end if

A. Rare Tree Construction

Given an unlabeled dataset X, for building a rare tree over
X, we recursively divide X by selecting a split dimension i and
a split value v until the size of the input dataset is less than
a threshold. For simplicity, we define a rare tuple consisting
of both the split dimension and value, denoted as (i, v). In the
following text, we first describe how to select a rare tuple, and
then present detailed steps for building a rare tree. In the end of
this section, we explore the several interesting characteristics
of the rare tree.

1) Choosing Rare Tuple: Given a dataset X ⊂ Rd, let
D = {1, 2, . . . , d} denote the set of dimension indicators of
X. Let | · | denote the number of data examples in a dataset,
for example, |X| denotes the number of data examples in X.
Now, following the compactness and unimodality assumptions
of a rare class, we choose a rare tuple by using the dip test
in Definition 2. Algorithm 1 shows the detailed steps of rare
tuple selection.

Algorithm 1 works as follows.
1) Choose a split dimension using a while loop (lines 5–9).

This while loop is to search such a dimension that
has a large domain range and at least one mode. In
this while loop, we first choose a dimension t with
the largest domain range as the split dimension, that
is, t = arg maxj∈D(max(Xj) − min(Xj)). We implement
the dip test of X on the chosen dimension t. Then, p-
value is reported by the dip test for the unimodality
measure of Xt, and the locations of the largest mode
in Xt. As a commonly used strategy in the dip test [32],
we consider that Xt is multimodal shaped (has more
than one mode) if its p-value is larger than 10−10. This
process continues until the p-value returned by the dip
test is larger than 10−10 or each dimension has been
tested.

2) Choose a split value (lines 11–17). As mentioned ear-
lier, the dip test returns the left and right boundaries
of the largest mode, that is, xL and xR. From these

Algorithm 2 RareTree
1: Input: The unlabelled dataset X
2: Output: The Rare Tree T
3: T ← ∅ � T is an static variable and initialized only once
4: if |X| < θ then
5: � ← new LeafNode � Generate a leaf node
6: T ← T ∪ �

7: �.size ← |X| , �.density ← p(�)

8: Return �

9: else
10: � ← new InnerNode � Generate an inner node
11: T ← T ∩ �

12: (j, v) ← RareTuple(X)
13: L←

{
Xi|∀Xi ∈ X, Xj

i ≤ v
}

, R← X\L
14: �.rare_tuple ← (j, v)
15: �.left ← RareTree(L)
16: �.right ← RareTree(R)
17: Return �

18: end if

boundaries, we select the one that can split the input
dataset more equally as the split value. We use this
selection strategy because a more balanced binary tree
can reduce the time complexity of searching over
this tree. For example, in Fig. 1, we select C from
the locations of the largest mode [C, D] as the split
value.

2) Rare Tree Construction: After choosing the split dimen-
sion and value according to Algorithm 1, we now describe
how to build a rare tree. The rare tree is constructed by
recursively splitting the input dataset until the size of the
dataset is less than a threshold θ . Let T = {Ti|i = 1, 2, . . .}
denote the rare tree, where Ti is either a leaf node with
no child or an inner node with two children. For each Ti,
let CTi = {Xi|∀Xj ∈ X, Xj falls in Ti during the split process}
denote the set of data examples in Ti. Before introducing how
to build a rare tree, we first show the definition of node density
as follows.

Definition 3 (Node Density): Given a rare tree T and a node
Ti ∈ T , the node density of Ti, denoted as p(Ti), is defined as
follows:

p(Ti) =
∣∣CTi

∣∣

nV(Ti)
(1)

where |CTi | denotes the number of data examples in the node,
or called node size, and V(Ti) denotes the node volume of the
hyper-rectangle that Ti represents.

Algorithm 2 presents the pseudocode for rare tree con-
struction. Given a dataset X, we recursively split the input
dataset using a rare tuple (i, v) until the termination condi-
tion, |X| < θ , is satisfied, as shown in line 3. In lines 4–7,
we stop the split process and generate a leaf node using the
current dataset. In lines 9–15, we continue to split the input
dataset as follows. We first calculate the rare tuple according
to Algorithm 1. Then, we split the current node using this rare
tuple into two subdatasets. The depth of a rare tree depends



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CYBERNETICS

Fig. 3. Internal structure of a rare tree.

Fig. 4. Density estimation. (a) True. (b) KDE. (c) Fast-RCM.

on the number of data examples and the dimensionality of the
dataset. Usually, the depth of the rare tree is larger than six.

The goal of the rare tree construction is to reorganize all
the data examples of the same rare class into the same leaf
node. The threshold θ should be larger than the size of a
rare class. This guarantees that all the data examples of a
rare class can be split into the same leaf node. Since rare
classes are usually hidden in a dataset with over 99% data
examples from the major classes in practice, this threshold
θ is empirically set based on the size of the input dataset
according to θ = |X|×5%. Fig. 3 shows the internal structure
of the rare tree built over a 2-D dataset which contains one rare
class and one major class. In Fig. 3, the black circles represent
the inner nodes, and the red and blue circles represent the
leaf nodes. We can see that most of the data examples from
the rare class fall into red circles with high density and short
traversing path. Note that the two red circles have significantly
different density since they come from different regions of the
rare class: the one with larger density is from the centroid of
the rare class while the other with smaller density is from the
boundary of the rare class.

Our rare tree is different from the common decision tree
from many perspectives. Common decision tree is used for
supervised learning, including regression and classification
while the rare tree is used for RCM under the unsupervised
setting. The training procedure of a common decision tree
requires learning strategies to minimize the training error,
for example, GBDT [35] constructs an ensemble of weak
decision trees through gradient boosting. Compared with the
common decision tree, the rare tree leverages the dip test to
select the split dimension and value and requires no training
procedure.

3) Exploration of the Rare Tree: Until now, we have built
the rare tree. In this section, we discuss some interesting
characteristics of this rare tree.

Density Estimator: As a side function, the rare tree can
be used as a density estimator for imbalanced datasets.
Specifically, we use the density of leaf nodes to estimate
the density over a single data example Xi ∈ X. The density
estimation function over Xi is defined as follows.

Definition 4 (Estimated Density): Given a rare tree T and
a data example Xi ∈ X, the estimated density of Xi, denoted
as f̂ (Xi), is defined as

f̂ (Xi) =
∑

Ti∈T,Ti is a leaf node

δ(Xi ∈ CTi)p(Ti) (2)

where δ(·) denotes the Kronecker delta function [36] that gives
the value 1 when its argument is true and 0 otherwise.

Fig. 4 illustrates the effectiveness of a rare tree as a density
estimator on a dataset of 26 000 data examples. In particular,
Fig. 4(a) shows the true density of the dataset where the left
peak represents the area of the major class and the right peak
is the rare class. For the rare tree, we set γ = n × 5% and
θ = n× 5%. Fig. 4(b) shows the density estimation results of
the kernel density estimation (KDE) [37], and Fig. 4(c) shows
the density estimation results of the rare tree. From Fig. 4(b),
we observe that although KDE smoothly estimates the density,
it performs a poorer estimation for the rare class than that of a
rare tree as depicted in Fig. 4(c). Therefore, we conclude that
our constructed rare tree can perform more accurate estimation
than that of KDE in RCM.

Searching Behaviors: First, we give the definition of search-
ing path length. The searching path length is measured by the
length of the path starting from the root node to a leaf node



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WENG et al.: FAST-RCM: FAST TREE-BASED UNSUPERVISED RCM 7

that terminates the searching process. We formally define the
searching path length as follows.

Definition 5 (Path Length): Given a rare tree T and a data
example Xi ∈ X, the path length of Xi, denoted as h(Xi), is
defined as

h(Xi) =
∑

Ti∈T

δ(Xi ∈ CTi). (3)

Then, we search all the data examples over the rare tree
and explore their searching behaviors. Based on the compact-
ness and unimodality assumptions that the data examples of a
rare class form a mode on the feature space, we conclude that
those data examples tend to be separated from the remain-
ing in the previous split process by a rare tuple. Therefore,
those data examples will have short searching path on aver-
age. Besides, the compact cluster of those data examples tends
to be separated from the remaining as a whole. Hence, those
data examples will fall into the leaf nodes with high esti-
mated density. Based on such analysis, we summarize that the
data examples of the rare classes have two dominating fea-
tures: 1) high estimated density and 2) short searching path
length.

Let us consider Fig. 3 as an example again. Most of the data
examples from the rare class have path length 3 while most
of the data examples from the major class have path length
larger than 3. It is obvious that the data examples from the
rare class have a shorter path length on average than that of
those from the major class.

4) Analysis of the Rare Tree: The estimated density is of
key importance for rare-class extraction since it is further used
to select the candidate set of rare classes (will be introduced
in Section IV-B for details). In this section, we theoretically
measure the performance of the rare tree as a density estimator.

Given an unlabeled dataset X, let us denote f̂ (·) and f (·) as
the estimated and true probability density of Xi ∈ X, respec-
tively. Given the rare tree T built over X, we further denote
T(Xi) ∈ T as the leaf node that contains Xi as well as the
region it represents.

To measure the performance of the rare tree, we use mean
squared error denoted as e to quantify the deviation between
f̂ (Xi) and the true probability density f (Xi), which is defined
as follows:

e = E

[(
f̂ (Xi)− f (Xi)

)2
]
. (4)

Let us first simplify (4) as follows:

e = Var
(

f̂ (Xi)
)
+
(
E

[
f̂ (Xi)

]
− f (Xi)

)2

= σ 2 + β2.

In the following text, we theoretically analyze σ 2 and β2,
respectively. Before analyzing them, we introduce the defini-
tion of the second-order Taylor approximation [38] around the
leaf node.

Definition 6 (Taylor Approximation): Given Xi ∈ X and the
leaf node T(Xi) where Xi falls, the second-order Taylor approx-
imation of f (Xi) within the region represented by T(Xi) is

defined as

f (Xi) ≈ f
(
Xi
)+ (Xi − Xi

)T
J
(
Xi
)

+ 1

2

(
Xi − Xi

)T
H
(
Xi
)(

Xi − Xi
)

(5)

where Xi is the middle data example of the region defined by
T(Xi), J(X̄i) is the gradient of Xi, and H(Xi) is the Hessian
matrix [37] of Xi.

According to the second-order Taylor approximation of
f (Xi), we have the following lemma which approximates the
probability of a data example falling into a leaf node, denoted
as P(T(Xi)).

Lemma 1: Given a rare tree T and a data example Xi ∈ X,
the approximate probability of Xi falling into a leaf node is

P(T(Xi)) =
∫

x∈T(Xi)

f (x)dx

≈ f (Xi)V(T(Xi))+ 1

24

d∑

j=1

∂2f
(
Xi
)

∂Xj
i
2

∇j
2V(T(Xi)) (6)

where ∇j is the jth range of the region that T(Xi) represents.
Proof: After applying the Taylor approximation of (5) on

f (x), the right part of (6) can be written as
∫

x∈T(Xi)

f (x)dx ≈ f
(
Xi
)
V(T(Xi))

+
d∑∫

∂f
(
Xi
)

∂Xj
i

(
xj − Xj

i

)
dx

+
d∑

k,j=1

∫
∂2f

(
Xi
)

∂Xk
i ∂Xj

i

(
xk − Xk

i

)(
xj − Xj

i

)
dx.

Since (xk − X̄k
i ) is an odd function in the region of the

leaf node,
∑d

j=1

∫
(∂f (Xi)/∂Xj

i)(x
j − Xj

i)dx equals to zero. In

addition, (xk−Xk
i )(x

j−Xj
i) is an odd function in this region as

well if k �= j. Therefore,
∑d

k,j=1

∫
[(∂2f (Xi))/(∂Xk

i ∂Xj
i)](x

k −
Xk

i )(x
j − Xj

i)dx can be written as

d∑

j=1

∫
∂2f

(
X
)

∂Xj
i
2

(
xj − Xj

i

)2
dx

= 1

6

d∑

j=1

∂2f
(
Xi
)

∂Xj
i
2
· ∇j

2

4
V(T(Xi)).

Then, Lemma 1 holds.
According to Lemma 1, we have the following lemma on

the expectation of the estimated density around a leaf node.
Lemma 2: The expectation of the estimated density is

E

[
f̂ (Xi)

]
≈ f

(
Xi
)+ 1

24

d∑

j=1

∂2f
(
Xi
)

∂Xj
i
2

∇j
2.

Proof: The expectation of the estimated density, denoted
as E[f̂ (x)], can be simply defined as the ratio between the
expected probability of data examples within the leaf node,
denoted as [(E[|CT(Xi)|])/n], and the volume of the leaf



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CYBERNETICS

node, denoted as V(T(Xi)). Further, the expected probability
[(E[|CT(Xi)|])/n] equals to nP(T(Xi)). Therefore, we have

E

[
f̂ (Xi)

]
= nP(T(Xi))

V(T(Xi))
. (7)

After applying Lemma 1 to the above equation, Lemma 2 is
proven.

According to Lemma 2 and the second-order Taylor approx-
imation, we have the following theorem which captures the
upper bound of the density estimation bias, that is, β2.

Theorem 1: The upper bound of the density estimation
bias is

β2 ≤
⎛

⎝ 1

24

d∑

j=1

∂2f (Xi)

∂Xj
i
2

∇j
2

⎞

⎠

2

+ 1

4

d∑

j=1

(
∂f (Xi)

∂Xj
i

∇j

)2

+ 1

64

d∑

k,j=1

(
∂2f (Xi)

∂Xk
i ∂Xj

i

∇k∇j

)2

+ |C1C2| + 1

4
|C1C3|

+ 1

8
|C2C3|

where C1 = (1/24)
∑d

j=1 [(∂2f (Xi))/(∂Xj
i
2
)] ∇j

2,

C2 = ∑d
j=1 |([∂f (Xi)]/[∂Xj

i])∇j|, and C3 = ∑d
k,j=1

|([∂2f (Xi)]/[∂Xk
i ∂Xj

i])∇k∇j|.
Proof: After applying Lemma 2 to the equation β2 =

(E[f̂ (Xi)]− f (Xi))
2
, we have

β2 ≈ (C1 + f (Xi)− f (Xi)
)2

. (8)

Recall that C1 = (1/24)
∑d

j=1([∂
2f (Xi)]/[∂Xj

i
2
])∇j

2, which is
given in Theorem 1. Using the second-order Taylor approxi-
mation to substitute f (Xi), the above equation can be written
as the following:

β2 ≈
(

C1 − (Xi − Xi)
TJ(Xi)− 1

2
(Xi − Xi)

TH(Xi)(Xi − Xi)

)2

.

Expanding all the terms in J(Xi) and H(Xi) of the above
equation, we have

β2 ≈
⎛

⎝C1 −
d∑

j=1

∂f (Xi)

∂Xj
i

(Xj
i − Xj

i)

− 1

2

d∑

k,j=1

∂2f (Xi)

∂Xk
i ∂Xj

i

(Xk
i − Xk

i )(X
j
i − Xj

i)

⎞

⎠

2

. (9)

Expanding the quadratic term of the above equation, we
have

β2 ≈ C2
1 +

d∑

j=1

(
∂f (Xi)

∂Xj
i

(Xj
i − Xj

i)

)2

+ 1

4

d∑

k,j=1

(
∂2f (Xi)

∂Xk
i ∂Xj

i

(Xk
i − Xk

i )(X
j
i − Xj

i)

)2

− 2C1

d∑

j=1

∂f (Xi)

∂Xj
i

(Xj
i − Xj

i)

−C1

d∑

k,j=1

∂2f (Xi)

∂Xk
i ∂Xj

i

(Xk
i − Xk

i )(X
j
i − Xj

i)

+
⎛

⎝
d∑

j=1

∂f (Xi)

∂Xj
i

(Xj
i − Xj

i)

×
d∑

k,j=1

∂2f (Xi)

∂Xk
i ∂Xj

i

(Xk
i − Xk

i )(X
j
i − Xj

i)

⎞

⎠.

After further analysis, we have

β2 ≤
⎛

⎝ 1

24

d∑

j=1

∂2f (Xi)

∂Xj
i
2

∇j
2

⎞

⎠

2

+ 1

4

d∑

j=1

(
∂f (Xi)

∂Xj
i

∇j

)2

+ 1

64

d∑

k,j=1

(
∂2f (Xi)

∂Xk
i ∂Xj

i

∇k∇j

)2

+ |C1C2| + 1

4
|C1C3|

+ 1

8
|C2C3|.

Recall C2 = ∑d
j=1 |([∂f (Xi)]/[∂Xj

i])∇j| and C3 =
∑d

k,j=1 |([∂2f (Xi)]/[∂Xk
i ∂Xj

i])∇k |. Then, Theorem 1 has been
proven.

This theorem indicates that the length of each dimension
that forms the region, represented by the leaf node T(Xi), is a
key factor in determining the bias. The bias of a rare tree can
be reduced by a more suitable region of each leaf node. In this
paper, the dip test used to choose a split value and dimension
makes a suitable region of the leaf node, especially for the
one that contains the rare class. In other words, the deviation
between f (Xi) and f̂ (Xi) is reduced by the dip test.

Next, we introduce the following theorem which shows the
upper bound of the density estimation variance, that is, σ 2.

Theorem 2: σ 2 ≤ (θ2/[n2Var(V(�(x)))]).
Proof: Based on (1) and (2), the estimated density

of the data example Xi can be rewritten as f̂ (x) =
(|CT(Xi)|/nV(T(Xi))). Recall that T(Xi) denotes the leaf node
where Xi falls. Applying the above equation to σ 2, we
have σ 2 = (1/n2)Var(|CT(Xi)|/V(T(Xi))). Since the size
of each leaf node is less than a threshold θ , we have
σ 2 ≤ (θ2/[n2Var(V(T(Xi)))]). Therefore, we have proven
Theorem 2.

This theorem indicates that the variance of the rare tree as a
density estimator depends on three factors, that is, the number
of data examples in the input dataset, the volume of the leaf
node, and the threshold of the leaf node size. The variance
increases as the threshold θ increases, and it decreases as the
number of data examples in the input dataset or the volume of
the leaf node increases. For a specific application, the number
of data examples and the volume of the leaf node are fixed.
The variance only depends on the threshold of the leaf node
size which we suggest to set based on the dataset (refer to
Section IV-A for more details).

B. Rare-Class Extraction

Given a rare tree T built over the input dataset X, in this
section, we describe the rare-class extraction step of Fast-
RCM. In general, we first search all the data examples using
the constructed rare tree. Then, we rank all the data exam-
ples according to their searching results over the rare tree,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WENG et al.: FAST-RCM: FAST TREE-BASED UNSUPERVISED RCM 9

and select a few high-ranked data examples as a rare-class
candidate set. Finally, we refine the candidate set in order
to accurately extract the rare class. We introduce our rank-
ing method in Section IV-B1, and then describe the rare-class
extraction process in Section IV-B2.

1) Ranking the Data Examples: As described in the above
section, data examples of the rare class have two dominating
features: 1) high estimated density and 2) short searching path
length. Naturally, the combination of those two features can
be used to discriminate the data examples of a rare class from
the remaining data examples of the major classes. Therefore,
we define a ranking function using those two dominating fea-
tures, where data examples of the rare class would have higher
ranking scores while in contrast data examples of the major
class would have lower ranking scores. This ranking function
is defined as follows.

Definition 7 (Ranking Function): Given a data example
Xi ∈ X and a rare tree T , the ranking score of Xi, denoted
as r(Xi), is defined as

r(Xi) = α

h(Xi)
+ β f̂ (Xi)

where α and β are the two constants and α + β = 1, h(Xi)

is the searching path length (Definition 5), and f̂ (Xi) is the
estimated density (Definition 4).

Since data examples of the major class have low estimated
density and long searching path length, it is likely that they
tend to have lower ranking scores. On the contrary, since data
examples from the rare class have high estimated density and
short searching path, it is likely that these data examples tend
to have higher ranking scores. However, in the extreme case
that the rare classes are overlapped with the major classes,
data examples from the dense areas of the major classes tend
to have higher ranking scores as well. As a result, we cannot
accurately extract the rare class if we simply discriminate the
highly ranked data examples as the rare classes.

2) Extraction: As aforementioned, in the overlapped case,
we cannot accurately extract the rare classes by simply dis-
criminating the high-scored data examples as a rare class. To
address this issue, with the goal of extracting a more accu-
rate rare class, we first filter a large percent of data examples
from the major classes according to their ranking scores. Then,
we refine and extract the rare class from the remaining data
examples. Algorithm 3 shows the detailed steps of rare-class
extraction. Specifically, we extract a rare class as follows.

1) In lines 3–5, we calculate the ranking scores of each
data example, and select the top γ data examples as the
rare-class candidate set, where γ is a positive integer.

2) In line 6, we use a specific clustering algorithm to
automatically cluster the rare-class candidate set. In
this paper, we use a simple yet effective clustering
algorithm, k-means. We choose the k-means algorithm
simply because of its time efficiency.

3) In line 7, we choose the clusters with large data size
and small variance from the clustering results as the rare
classes.

In the above steps of rare-class extraction, γ is a key thresh-
old and a suitable value of γ will lead to both high recall and

Algorithm 3 RareClassExtraction
1: Input: The unlabelled dataset X and the rare tree T
2: Output: the rare classes
3: R← {Ri|∀Xi ∈ X, Ri = r(Xi)} � Calculate the ranking

scores for all data examples
4: t← the γ -th largest value in R
5: C0 ← {Xi|∀Xi ∈ X, Ri � t} � Select the top γ data

examples
6: C1 ← clustering results of C0 � Clustering analysis
7: C← proper clusters from C1 � Select clusters with

large dataset size and small variance
8: return C

high precision of the rare class. γ is suggested to be larger
than the size of the classes, which guarantees that the candidate
set potentially contains sufficient data examples for rare-class
extraction. Since in the RCM scenario, rare classes are usu-
ally hidden in a dataset with over 99% data examples from the
major classes, we suggest to set γ ≥ |X| × 1%. Moreover, in
Section V-B2, we will experimentally show the effectiveness
of the Fast-RCM by varying γ .

C. Time Complexity

Assuming the procedure is provided with sorted date exam-
ples, the worst-case time complexity of the tree construction
process is O(dn log(n/θ)), where θ is the threshold of the node
size and d is the dimensionality. For the rare-class extraction
step, the worst-case time complexity of searching each data
example is O(n log(n/θ)) and the time complexity of the rank-
ing process is O(n log n). Hence, the overall time complexity
of Fast-RCM is in O((d + 1)n log(n/θ)+ n log n).

V. EXPERIMENTAL EVALUATION

In this section, we first introduce the datasets used in our
experiments. Then, we discuss how to determine two impor-
tant parameters for Fast-RCM: 1) the threshold θ and 2) the
filtering size γ . After that, we evaluate the performance of
Fast-RCM on both synthetic datasets and real-world datasets.
For the performance evaluation, we verify the effectiveness
and efficiency of the Fast-RCM from two aspects: 1) the accu-
racy comparison in terms of the I-score of the rare classes (i.e.,
the harmonic mean of precision and recall of the rare classes)
and 2) the runtime comparison.

A. Datasets

1) Synthetic Datasets: We choose the generative model for
synthetic datasets such that it exhibits the challenging proper-
ties that we focus on in RCM. Overall, we generate 18 syn-
thetic datasets: ten synthetic datasets with varying dataset
size, denoted as DD1, DD2, . . . , DD10 and eight datasets with
varying dataset dimensionality, denoted as DS1, DS2, . . . , DS8.
Those synthetic datasets satisfy that:

1) the dataset size n vary from 102 000 to 1 002 000 with
an incremental 100 000;

2) the dimensionality of the synthetic datasets ranges from
1 to 40 with an incremental 5;



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CYBERNETICS

TABLE I
REAL-WORLD DATASETS

3) the pdf of the rare class is Gaussian with a small
standard deviation;

4) the pdf of the major class is Gaussian with a large
standard deviation;

5) the rare class has 2000 data examples in low-
dimensional datasets (with less than or equal to
five dimensions), and 3000 data examples in high-
dimensional datasets (with more than five dimensions).

2) Real-World Datasets: The real-world datasets used in
our experiments are collected from three databases: 1) UCI
database [39]; 2) Montgomery County database (MCD); and
3) MOOC database. Table I shows the detailed information of
the real-world datasets, where n is the number of data exam-
ples in the dataset, d is the dimensionality of the dataset, m is
the number of different classes in the dataset, #y is the label
of the rare class, and nr is the number of data examples of the
objective rare class.

From the UCI database [39], we select five datasets:
1) Breasts; 2) Iris; 3) Wine; 4) Digits; and 5) KDD99.
These datasets are from various application domains, such as
medical, biology, computer science, and cybersecurity. Many
existing RCM and RCD work also utilize these datasets in
their experiments [3], [4], [7], [8], [12], [26], [31]. Especially,
these five datasets are subsampled for creating RCM scenarios.

In addition to the above five datasets, we employ two other
real-world datasets from the Montgomery County and MOOC
databases, respectively.

From the MCD, we select one dataset, CALLS.1 This
dataset contains three kinds of emergency (911) calls: 1)
fire call; 2) traffic call; and 3) EMS call. These emergency
calls were collected from the Montgomery County between
December 10, 2015 and November 20, 2016. Each emergency
call has eight features: 1) longitude; 2) description; 3) zipcode;
4) title; 5) timestamp; 6) township; 7) address; and 8) dummy
variable. Fig. 5 illustrates the data distribution of the number
of calls in CALLS. From Fig. 5, we observe that the number of
emergency calls in Montgomery in the days near January 23,
2016 significantly deviated from the normal level. For more
details, a major blizzard produced up to 3 ft (91 cm) of snow
in parts of the Mid-Atlantic and Northeast United States from
January 23, 2016 to January 24, 2016. Based on this observa-
tion, we manually label the emergency calls from January 23,
2016 to January 24, 2016 as the rare class.

MOOC2 is an online course platform aiming at unlimited
participation and open access via the Web. From MOOC, we

1http://montcoalert.org/gettingdata/
2https://en.wikipedia.org/wiki/Massive_open_online_course

Fig. 5. Distribution of the number of the emergency calls. The peak value
near January 23, 2016 reveals the extreme weather.

Fig. 6. (a) Effectiveness and (b) efficiency under different θ .

select a real-word course dataset DSAA3 of the online course
“data structures and algorithms.” DSAA contains the records
of 50 304 registered students among which only 272 students
received the course certification. Each record of a registered
student has four features: 1) video time; 2) post number;
3) reply number; and 4) quiz score. The 272 students who
received the final course certifications are regarded as the rare
class in RCM scenario.

B. Parameter Selection

In this section, we discuss how to determine two important
parameters for Fast-RCM: 1) the terminate threshold θ for the
rare tree construction and 2) the filtering size γ for rare-class
extraction.

1) Selection of θ : The threshold θ used in Fast-RCM (refer
to Algorithm 2) represents the maximum number of data
examples that can be contained in a leaf node. We first discuss
how to determine θ .

Settings: We determine θ by analyzing the running results
of Fast-RCM with different values of θ . To this end, we select
four synthetic datasets: DS1, DS2, DS3, and DS4, and two
real-world datasets: Digits and DSAA. Then, for each of these
datasets, we set γ to the number of rare examples from the
dataset and run Fast-RCM by varying θ . Especially, we vary
the value of θ from n × 0.5% to n × 10%, where n denotes
the number of examples from the dataset.

Results and Findings: We show the running results of Fast-
RCM on the six datasets in Fig. 6, where the horizontal
ordinate represents the ratio between θ and n. To be specific,
Fig. 6(a) shows the F-score of the discovered rare class and
Fig. 6(b) shows the runtime. First, Fast-RCM achieves quite
high F-score of the discovered rare class with θ ranging from
n× 2% to n× 10%. This is because the termination signal θ

3https://github.com/HaiQW/DATA/tree/master/DSAA



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WENG et al.: FAST-RCM: FAST TREE-BASED UNSUPERVISED RCM 11

Fig. 7. Effectiveness of varying filtering size γ .

controls the splitting process of the dataset and a proper value
of θ may reorganize the given dataset better. Second, the run-
time of Fast-RCM decreases as θ increases. This is because
the time complexity of searching examples over the rare tree
is n log (n/θ).

In summary, the above running results tell that Fast-RCM
achieves a high F-score with a small value of θ and requires
a low runtime cost with a large value of θ . Therefore, aim-
ing at finding the balance between the effectiveness and time
efficiency, we suggest to set θ = n× 5%.

2) Selection of γ : The parameter γ represents the num-
ber of examples selected to the candidate set (refer to
Algorithm 3). Here, we discuss how to determine γ .

Settings: Similar to θ , we determine γ through analyzing
the effectiveness of Fast-RCM on six datasets: DS1, DS2, DS3,
DS4, Digits, and DSAA. To this end, for each of these datasets,
we set θ = n × 5% and run Fast-RCM on the dataset by
varying γ .

Results and Findings: We show the F-score of the dis-
covered rare class in Fig. 7, where the horizontal ordinate
represents the ratio between γ and the dataset size n. Note
that we do not analyze the time efficiency in this experiment
since that the runtime of refining the candidate set is neg-
ligible as compared to the whole time consumption. From
Fig. 7, we observe that the F-score of the discovered rare
class increases with the increasing of γ when γ is less than
n × 5%. Also, there exist some special cases, for example, on
the CALLS dataset, the F-score of the discovered rare class
fluctuates within a narrow range. For another example, on the
synthetic dataset DS4, the F-score of the discovered rare class
decreases when γ is larger than n× 4.5%. Those unexpected
results might lie in the reason that there is a large overlap
between the rare classes and the major classes. We did not
report the F-score for γ ≥ n×5% because the F-score has no
rules or may suddenly drop to zero. This phenomenon means
that Fast-RCM does not work for a large value of γ .

From the above analysis, we conclude that Fast-RCM can
mine out a more accurate rare class if we set γ to an appropri-
ate value. Moreover, since the size of the rare class is relatively
small as compared to the rest, a small value of γ will make
Fast-RCM work properly. In our experiment, we suggest to
set γ = n× 5%.

C. Accuracy Comparison

After discussing how to determine the parameters, we
evaluate the accuracy of Fast-RCM on both real-world

Fig. 8. F-score by varying n and d on the synthetic datasets. (a) Size.
(b) Dimensionality.

datasets and synthetic datasets. To be specific, we com-
pare the accuracy of Fast-RCM with FRANK [4], IF [14],
LOF [13], and label propagation (LP) [40] using the F-score
of the discovered rare class. FRANK [4] is a state-of-
the-art RCE algorithm that transforms RCE to local com-
munity detection; IF [14] is a tree-based outlier detection
algorithm; LOF [13] is a standard outlier detection algo-
rithm; and LP [40] is a classical semisupervised learning
algorithm.

Settings: We configure the experiment of the tested algo-
rithms as follows.

1) For Fast-RCM, we set θ = n×5% and set γ = n×10%.
Note that on KDD99, we specifically set γ = n× 10%
since it has a slightly large number of data examples
from the rare class.

2) For FRANK, we run each of the three RCD algorithms
(NNDM [7], CLOVER [8], and FRED [27]) to select dif-
ferent data examples from the rare class as three seeds.
Then, we run FRANK three times using different seeds
and report the average F-score of FRANK.

3) For LP, we use the same representative data example
used by FRANK as seeds.

4) For LOF, we set the parameter k to the ground-truth
number of the data examples in the rare class.

5) For IF, we construct 100 tree estimators, each of which
is built upon 1000 randomly sampled examples.

Results and Findings: We report the running results of
the tested algorithms on the synthetic datasets and real-world
datasets in Figs. 8 and 9, respectively. First, we observe that
Fast-RCM outperforms all the tested algorithms in most cases.
Second, LOF did not mine out any data examples from the
rare class even if we optimized the parameter k on Wine and
Breasts. This might be because the rare class in the dataset is
overlapped with major classes. We do not report the F-score of
FRANK on CALLS as it ran out of memory. Third, although
LP has the best F-score on Iris and FRANK has the best F-
score on Breast, they have three disadvantages: 1) they need
prior information; 2) they perform poorly in the remaining
datasets; and 3) they are time consuming as shown in the
following experiments.

In summary, from the above experimental analysis, we
can conclude that: 1) Fast-RCM achieves the satisfac-
tory performance on both synthetic and real-world datasets;
2) compared with LP and FRANK, Fast-RCM is a more proper



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON CYBERNETICS

Fig. 9. F-score achieved by different algorithms under multiple real-world datasets. (a) Iris. (b) Wine. (c) Breasts. (d) Digits. (e) CALLS. (f) DSAA.
(g) KDD99.

Fig. 10. Runtime for varying n and d. (a) Size. (b) Dimensionality.

RCM solution as it requires no prior information; and 3) Fast-
RCM can potentially find the rare class of interests in real
applications.

D. Runtime Comparison

In this experiment, we evaluate the runtime complexity of
Fast-RCM on the synthetic datasets.

Setting: We compare the runtime of five tested algorithms,
Fast-RCM, IF, FRANK, LOF, and LP [40], with scaled n
and d. We configure this experiment as follows.

1) For Fast-RCM, we set θ = n×5% and set γ = n×5%.
2) For FRANK, we run NNDM to select representative

data examples of the rare class as seeds. Then, we run
FRANK using these seeds and report its runtime.

3) For LP, we use the same seeds used by FRANK.
4) For LOF, we set the parameter k to the ground-truth

number of the data examples in the rare class.
5) For IF, we construct 100 tree estimators, each of which

is built upon 1000 randomly sampled examples.
Results and Findings: We report the runtime of the tested

algorithms in Table II and illustrate the runtime behavior in
Fig. 10. First, we observe that Fast-RCM is faster than IF,

TABLE II
RUNTIME (SECONDS) OF THE TESTED ALGORITHMS

ON VARIOUS DATASETS

FRANK, LOF, and LP on all the tested datasets. We do not
show the runtime of FRANK and LP in several cases in
Table II as they did not finish running within 24 h. Second, in
Fig. 10(b), we see linear runtime behavior with increasing n for
Fast-RCM and IF and quadric runtime behavior for FRANK,
LOF, and LP. Third, in Fig. 10(b), we see that the runtime
growth, with an increasing d, is nearly zero for Fast-RCM
and IF, and is linear for LOF and LP.

In summary, based on the above runtime analysis, we con-
clude that: 1) Fast-RCM is approximately five times faster than
that of the state-of-the-art methods and 2) Fast-RCM has an
approximately linear time complexity with respect to dataset



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WENG et al.: FAST-RCM: FAST TREE-BASED UNSUPERVISED RCM 13

size n and dimensionality d. This linear time complexity is
achieved by using the rare tree to reorganize the input dataset
and rank data examples of the dataset. Thus, the Fast-RCM
can be applied to large-scale datasets in reality to discover
interesting patterns.

E. Summary of Experimental Results

In summary, Fast-RCM achieves significant advantage in
accuracy, and is effective to extract interesting patterns of
rare classes in both synthetic and real-word datasets under the
unsupervised setting. For example, Fast-RCM can detect the
natural disaster happening in Montgomery County from the
CALLS dataset. The experimental results are summarized as
follows.

1) From the experiments of parameter selection, we show
that Fast-RCM can mine out a more accurate rare class
if the threshold θ is within the range from n × 2% to
n × 10% and the filtering size γ is appropriate. We
suggest to set θ = n× 5% and set γ = n× 5%.

2) In the experiments of accuracy comparison, Fast-RCM
achieves a higher accuracy than that of the state-of-the-
art methods in most cases. We conclude that without any
prior information, Fast-RCM is effective to extract rare
classes from both synthetic and real-world datasets.

3) In the experiments of runtime comparison, Fast-RCM
is approximately five times faster than that of the
state-of-the-art methods. In addition, we observe that
Fast-RCM has an approximately linear time complexity
with respect to the dataset size n and the data dimension-
ality d. Thus, Fast-RCM can be applied to large-scale
datasets in reality to discover interesting patterns.

VI. CONCLUSION

In this paper, we investigate the unsupervised RCM
problem, which is first such an attempt to our knowledge.
For the unsupervised RCM problem, we propose an efficient
algorithm Fast-RCM. Fast-RCM achieves approximately lin-
ear complexity with respect to dataset size and dimensionality,
and is approximately five times faster than that of the state-
of-the-art approaches. Given an unlabeled dataset, Fast-RCM
first builds a rare tree for the input dataset, and then extracts
the rare class by traversing this rare tree. Leveraging multiple
real-world and synthetic datasets, we verify the effectiveness
and efficiency of the Fast-RCM.

For the next stage, we will focus on online RCM. To this
end, we are going to maintain a dynamic rare tree for the
streaming dataset. Then, we will try to extract the rare class
from the streaming dataset once the dynamic rare tree changes
its structure.

REFERENCES

[1] D. Pelleg and A. W. Moore, “Active learning for anomaly and rare-
category detection,” in Proc. Adv. Neural Inf. Process. Syst., 2005,
pp. 1073–1080.

[2] S. Bay, K. Kumaraswamy, M. G. Anderle, R. Kumar, and D. M. Steier,
“Large scale detection of irregularities in accounting data,” in Proc.
ICDM, 2006, pp. 75–86.

[3] H. Huang, Q. He, J. He, and L. Ma, “RADAR: Rare category detection
via computation of boundary degree,” in Proc. Pac.–Asia Conf. Knowl.
Disc. Data Min., 2011, pp. 258–269.

[4] H. Huang, K. Chiew, Y. Gao, Q. He, and Q. Li, “Rare category
exploration,” Expert Syst. Appl., vol. 41, no. 9, pp. 4197–4210, 2014.

[5] Z. Liu, H. Huang, Q. He, K. Chiew, and Y. Gao, “Rare category explo-
ration on linear time complexity,” in Proc. DASFAA, 2015, pp. 37–54.

[6] W. Eberle, J. Graves, and L. Holder, “Insider threat detection using a
graph-based approach,” J. Appl. Security Res., vol. 6, no. 1, pp. 32–81,
2010.

[7] J. He and J. G. Carbonell, “Prior-free rare category detection,” in Proc.
SIAM Int. Conf. Data Min., 2009, pp. 155–163.

[8] H. Huang, Q. He, K. Chiew, F. Qian, and L. Ma, “CLOVER: A faster
prior-free approach to rare-category detection,” Knowl. Inf. Syst., vol. 35,
no. 3, pp. 713–736, 2013.

[9] S. Wang, H. Huang, Y. Gao, T. Qian, L. Hong, and Z. Peng, “Fast rare
category detection using nearest centroid neighborhood,” in Proc. 18th
Asia–Pac. Web Conf. Web Technol. Appl., 2016, pp. 383–394.

[10] D. Tu, L. Chen, X. Yu, and G. Chen, “Semisupervised prior free rare
category detection with mixed criteria,” IEEE Trans. Cybern., vol. 48,
no. 1, pp. 115–126, Jan. 2018.

[11] P. Laskov, P. Düssel, C. Schäfer, and K. Rieck, “Learning intrusion
detection: Supervised or unsupervised?” in Proc. Int. Conf. Image Anal.
Process., 2005, pp. 50–57.

[12] J. He, H. Tong, and J. G. Carbonell, “Rare category characterization,”
in Proc. 10th Int. Conf. Data Min., 2010, pp. 226–235.

[13] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: Identifying
density-based local outliers,” ACM SIGMOD Rec., vol. 29, no. 2,
pp. 93–104, 2000.

[14] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in Proc. 8th
IEEE Int. Conf. Data Min., 2008, pp. 413–422.

[15] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Comput. Surveys, vol. 41, no. 3, p. 15, 2009.

[16] S. Hawkins, H. He, G. Williams, and R. Baxter, “Outlier detection
using replicator neural networks,” in Proc. Int. Conf. Data Warehousing
Knowl. Disc., 2002, pp. 170–180.

[17] D. Barbara, N. Wu, and S. Jajodia, “Detecting novel network intrusions
using Bayes estimators,” in Proc. SIAM Int. Conf. Data Min., 2001,
pp. 1–17.

[18] A. Valdes and K. Skinner, “Adaptive, model-based monitoring for cyber
attack detection,” in Proc. Int. Workshop Recent Adv. Intrusion Detect.,
2000, pp. 80–93.

[19] K.-L. Li, H.-K. Huang, S.-F. Tian, and W. Xu, “Improving one-class
SVM for anomaly detection,” in Proc. Int. Conf. Mach. Learn. Cybern.,
vol. 5, 2003, pp. 3077–3081.

[20] S. M. Erfani, S. Rajasegarar, S. Karunasekera, and C. Leckie, “High-
dimensional and large-scale anomaly detection using a linear one-class
SVM with deep learning,” Pattern Recognit., vol. 58, pp. 121–134,
Oct. 2016.

[21] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algo-
rithm for discovering clusters in large spatial databases with noise,” in
Proc. 2nd Int. Conf. Knowl. Disc. Data Min., 1996, pp. 226–231.

[22] S. Guha, R. Rastogi, and K. Shim, “ROCK: A robust clustering algo-
rithm for categorical attributes,” in Proc. 15th Int. Conf. Data Eng.,
1999, pp. 512–552.

[23] J. Tang, Z. Chen, A. W.-C. Fu, and D. W. Cheung, “Enhancing effective-
ness of outlier detections for low density patterns,” in Proc. Pac.–Asia
Conf. Knowl. Disc. Data Min., 2002, pp. 535–548.

[24] F. E. Grubbs, “Procedures for detecting outlying observations in sam-
ples,” Technometrics, vol. 11, no. 1, pp. 1–21, 1969.

[25] N. Ye and Q. Chen, “An anomaly detection technique based on a chi-
square statistic for detecting intrusions into information systems,” Qual.
Rel. Eng. Int., vol. 17, no. 2, pp. 105–112, 2001.

[26] J. He and J. G. Carbonell, “Nearest-neighbor-based active learning for
rare category detection,” in Proc. Adv. Neural Inf. Process. Syst., 2008,
pp. 633–640.

[27] Z. Liu, K. Chiew, Q. He, H. Huang, and B. Huang, “Prior-free rare
category detection: More effective and efficient solutions,” Expert Syst.
Appl., vol. 41, no. 17, pp. 7691–7706, 2014.

[28] D. Zhou, K. Wang, N. Cao, and J. He, “Rare category detection on
time-evolving graphs,” in Proc. IEEE Int. Conf. Data Min., 2015,
pp. 1135–1140.

[29] Z. Liu, H. Huang, Q. He, K. Chiew, and L. Ma, “Rare category detection
on O(dN) time complexity,” in Proc. Int. Conf. Database Syst. Adv.
Appl., 2015, pp. 37–54.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON CYBERNETICS

[30] Z. Liu, K. Chiew, L. Zhang, B. Zhang, Q. He, and R. Zimmermann,
“Rare category exploration via wavelet analysis: Theory and applica-
tions,” Expert Syst. Appl., vol. 63, pp. 173–186, Nov. 2016.

[31] J. He, Y. Liu, and R. D. Lawrence, “Graph-based rare category
detection,” in Proc. 8th IEEE Int. Conf. Data Min., 2008, pp. 833–838.

[32] S. Maurus and C. Plant, “Skinny-dip: Clustering in a sea of noise,” in
Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Disc. Data Min., 2016,
pp. 1055–1064.

[33] C. Zhang, B. E. Mapes, and B. J. Soden, “Bimodality in tropi-
cal water vapour,” Quart. J. Roy. Meteorol. Soc., vol. 129, no. 594,
pp. 2847–2866, 2003.

[34] J. A. Hartigan and P. M. Hartigan, “The dip test of unimodality,” Ann.
Stat., vol. 13, no. 1, pp. 70–84, 1985.

[35] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” Ann. Stat., vol. 29, no. 5, pp. 1189–1232, 2001.

[36] S. Hassani, Mathematical Methods: For Students of Physics and Related
Fields, vol. 720. New York, NY, USA: Springer, 2008.

[37] T. Hastie, R. Tibshirani, and J. H. Friedman, “The elements of statistical
learning,” in Data Mining, Inference, and Prediction (Springer Series in
Statistics), 2nd ed. New York, NY, USA: Springer-Verlag, 2009.

[38] D. Zill, W. S. Wright, and M. R. Cullen, Advanced Engineering
Mathematics, Jones & Bartlett Learn., 2011.

[39] A. Asuncion and D. Newman, “UCI machine learning repository,” 2007.
[40] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, “Learning

with local and global consistency,” in Proc. Adv. Neural Inf. Process.
Syst., 2004, pp. 321–328.

Haiqin Weng received the B.S. degree from the
South China University of Technology, Guangzhou,
China, in 2014. She is currently pursuing the Ph.D.
degree with the College of Computer Science and
Technology, Zhejiang University, Hangzhou, China,
under the supervision of Prof. Q. He.

Her current research interests include data mining
and machine learning.

Shouling Ji (M’10) received the first Ph.D. degree
in electrical and computer engineering from the
Georgia Institute of Technology, Atlanta, GA, USA,
and the second Ph.D. degree in computer science
from Georgia State University, Atlanta, GA, USA.

He is a ZJU 100-Young Professor with the College
of Computer Science and Technology, Zhejiang
University, Hangzhou, China, and a Research
Faculty with the School of Electrical and Computer
Engineering, Georgia Institute of Technology. His
current research interests include big data security

and privacy, big data driven security and privacy, adversarial learning, graph
theory and algorithms, and wireless networks.

Dr. Ji was the Membership Chair of the IEEE Student Branch at Georgia
State from 2012 to 2013. He is a member of ACM.

Changchang Liu received the bachelor’s and mas-
ter’s degrees from the University of Science and
Technology of China (USTC), Hefei, China (grad-
uated with Guo Moruo Scholarship, the highest
honor in USTC), and the Ph.D. degree from the
Department of Electrical Engineering, Princeton
University, Princeton, NJ, USA.

She is with IBM Thomas J. Watson Research
Center, Yorktown Heights, NY, USA. Her current
research interests include Internet of Things security,
statistical data privacy, and machine learning.

Ting Wang received the Ph.D. degree in computer
science from the Georgia Institute of Technology,
Atlanta, GA, USA.

He was a Research Staff Member and a Security
Analytic Leader with IBM Thomas J. Watson
Research Center, Yorktown Heights, NY, USA. He
is an Assistant Professor of computer science with
Lehigh University, Bethlehem, PA, USA. His cur-
rent research interests include computational privacy,
cyber-security analytics, and network science.

Qinming He received the B.S., M.S., and
Ph.D. degrees in computer science from Zhejiang
University, Hangzhou, China, in 1985, 1988, and
2000, respectively.

He is a Professor with the College of Computer
Science and Technology, Zhejiang University. His
current research interests include data mining and
computing virtualization.

Jianhai Chen (M’13) received the M.S. and Ph.D.
degrees in computer science and technology from
Zhejiang University (ZJU), Hangzhou, China.

He is currently a Lecturer with the College of
Computer Science and Technology, ZJU. He is the
Director of ZJU SuperComputing Team and has led
ZJU team winning the First Prize of ASC World
Supercomputing Contest four times and the Highest
Computing Performance Award. His project titled
designer won the First Prize of 2018 Xunlei World
Blockchain Application Development Contest. His

current research interests include cloud computing resource scheduling algo-
rithms, blockchain system security, and high-performance computing parallel
application optimization.

Dr. Chen is a member of CCF and ACM.


